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This paper describes a class of weather-weighted periodic auto-regressive sector demand
prediction models. The periodic auto-regressive model captures both the mid-term (30
minutes to 2 hours) trend based on the historical data, and the short-term (less than 30
minutes) transient response based on recent observations. For severe weather days, the
model uses the three-dimensional weather information, considering both storm locations
and echo tops, to form a weather factor to adjust the predictions. Unlike the traditional
trajectory-based sector demand prediction methods, which predict the behavior of the
National Airspace System adequately for short durations of up to 20 minutes and are
vulnerable to the weather uncertainties, this class of models provides reliable short to
mid-term sector demand predictions which account for the weather uncertainty.

I. Introduction

Demand for air transportation has grown rapidly in recent years and is expected to grow in the future.
In order to ensure smooth air traffic flow and safety in the presence of disruptions caused by convective

weather, innovative modeling and design methods are needed in traffic flow management (TFM). One of
the main functions of TFM is to predict and resolve demand-capacity imbalances at the sector level to
avoid congestion. Thus an accurate sector prediction model that can account for traffic flow uncertainty and
weather impact is an essential component of TFM.

Efforts have been made in the past few years to perform sector demand predictions. Traditionally, models
used in air traffic control and flow management are based on simulating the trajectories of individual aircraft.
Deterministic forecasting of sector demand is routinely done within the Enhanced Traffic Management System
(ETMS), which relies on the computation of each aircraft’s entry and exit times at each sector along the
path of flight. Gilbo1 proposed a regression model for improving aggregate traffic demand prediction in
ETMS, acknowledging the uncertainty in the predictions. A more recent TFM simulation tool, the Future
ATM Concepts Evaluation Tool (FACET),2 was used to propagate the trajectories of the proposed flights
forward in time and use them to count the number of aircraft in each sector for demand forecasting and
establish confidence bounds on the forecasts.3 These trajectory-based models predict the behavior of the
National Airspace System (NAS) adequately for short durations of up to 20 minutes and their accuracy of
predictions is impacted by weather and trajectory prediction uncertainties.4–6

The objective of this paper is to develop an empirical sector prediction model that accounts for traffic
flow uncertainty and weather impact on the prediction for both short-term (less than 30 minutes) and mid-
term (30 minutes to 2 hours) predictions. Unlike the traditional methods that use trajectory prediction
to perform the sector demand prediction, the periodic autoregressive (PAR) model and its variants7,8 were
used to build the prediction model. The class of PAR models consider both the historical traffic flows to
capture the mid-term trend, and the flows in the near past to capture the transient response. In addition, a
weather component was embedded in the model to reflect weather impact on sector demand.
∗Research Scientist, U.C. Santa Cruz, MS 210-8.
†Senior Scientist for Air Transportation Systems, Aviation Systems Division, Fellow.
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The remainder of the paper is organized as follows. Section II provides the sector demand data used
in the research and the description of the weather-free sector demand prediction model. Next, a weather
factor is introduced and the prediction model that considers weather is described in Section III. The results
and performance of the models are demonstrated in Section IV. Finally, a summary and conclusions are
presented in Section V.

II. Data and Model

II.A. Sector Demand Data

The air traffic demand data used in this paper are provided by the recorded Aircraft Situation Display to
Industry (ASDI) data generated by the Federal Aviation Administration’s Enhanced Traffic Management
System (ETMS). The ASDI data provide the locations of all aircraft at one-minute intervals. The sector
demand, defined as the number of aircraft in each sector at a given time, can be computed using the ASDI
data. In this research, the recorded ASDI data were processed using FACET to obtain the sector demand.

Since traffic flow management decisions are made by comparing the peak number of aircraft in a sector
during a fifteen-minute interval with the sector’s Monitor Alert Parameter (MAP) value, the 15-minute peak
sector demand, defined as the maximum sector demand every 15 minutes, was used to build the models.
Figure 1 shows the sector demand at every minute and the 15-minute peak sector demand at sector ZID93 on
September 3, 2007. Note that in the paper, a day is defined as a 24-hour interval starting at 4:00 AM local
time since most of the aircraft departing on the previous day would have landed before 4:00 AM. The black
line in Fig. 1 represents the sector demand in an one-minute intervals and the blue dots in Fig. 1 represent
the 15-minute peak sector demand during a day, denoted as dk, where k = 1 . . . 96. The mid-term trend
of sector demand on different days can be observed in Fig. 2, which shows the variation of 15-minute peak
sector demand in September 2007. In this figure, each horizontal strip represents one day of 15-minute peak
sector demand, and each vertical strip represents the peak sector demand at the same time of day during
the entire month. As shown in the figure, the horizontal strips on 9/1, 9/8, 9/15, 9/22 and 9/29, which are
Saturdays, have lower demands than the others. The blue vertical regions on the left and right show the
off-peak traffic in the early morning and the late night. A vertical light blue region at around 12 o’clock
divides the sector demand into morning rush left of the region and the afternoon peak right of it. The sector
demand prediction model presented in the next section captures these variations in the demand.

II.B. Demand Prediction Model

Auto-regressive models have been used for short-term hourly air traffic delay prediction.9,10 This research
extends the delay prediction approach to sector demand prediction.

For a given day, a 24-hour period, starting at 4:00 AM local time, is divided into 96 fifteen-minute
intervals. Given the observed 15-minute peak sector demands for n days, the sector demand data matrix is
defined as

D =


d1,1 d2,1 . . . d96,1

...
...

. . .
...

d1,n d2,n . . . d96,n

 , (1)

where di,j represents the 15-minute peak sector demand at the ith time step on day j. For September 2007,
D has a dimension of 30 by 96, and Fig. 2 shows the image of the matrix D. Assuming dk as the kth

column of D, the p-step-ahead sector demand model at time step k in the form of a linear regression model
is described as

dk+p = αk,p dk + βk,p + ek, (2)

where αk,p and βk,p are coefficients that map the sector demand at the kth time step to the (k + p)th time
step, and ek is the error of the model. The least-square solution of αk,p and βk,p that minimizes eTk ek in
Eq. (2) can be written explicitly as

α̂k,p =
∑n
i=1(dk,i − d̄k)(dk+p,i − d̄k+p)∑n

i=1(dk,i − d̄k)2
, (3)

β̂k,p = d̄k+p − αk,pd̄k, (4)
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Figure 1. Sector demand and peak sector demand at sector ZID93 on September 3, 2007
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Figure 2. 15-minute peak sector demand at sector ZID93 in September 2007

where d̄k is the mean of dk, and d̄k+p is the mean of dk+p.
On a day m other than the n days in the data set, the p-step prediction of the sector demand at the kth

time step, d̂k+p,m, based on the observed sector demand, dk,m, can then be expressed as

d̂k+p,m = α̂k,p dk,m + β̂k,p. (5)

In the model, α̂k,p and β̂k,p, identified from the historical data, capture the periodic features during a day,
and the observed sector demand dk,m provides the transient information. The model in Eq. (2) and Eq. (5)
is referred to as the periodic auto-regressive (PAR) sector demand prediction model.

As an example, peak sector demand data in August 2007 were used to construct the data matrix in
Eq. (1), and Eq. (2) was used to identify the model parameters α̂k,p and β̂k,p, where k = 1 . . . 96 and
p = 1 . . . 8 for 1-step- to 8-step-ahead predictions. The 15-minute-ahead peak sector demand on September
3, 2007 was predicted using Eq. (5) with p = 1. The result is shown in Fig. 3a. The root-mean-squared
(RMS) error between the actual peak sector demand and the 15-minute demand prediction is 1.93. For the
2-hour prediction, the prediction model is solved for p = 8, and the estimates in Eq. (5) are generated. The
result is shown in Fig. 3b. The RMS error is 2.15.

It is noticed that the PAR model yields larger error as the prediction interval increases. This suggests
that using a single observation dk,m in Eq. (5) contains less information about d̂k+p,m when p is large. An
alternate method to perform the demand prediction is to use the cumulative sum of the past sector demands
as an observation, since the sum includes more information than a single observation and has less noise
compared with the single peak sector demand. Following the definition of the sector demand matrix D in
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(a) 15-minute prediction
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(b) 2-hour prediction

Figure 3. Peak sector demand and predicted peak sector demand on September 3, 2007

Eq. (1), where dk is the kth column of D, the cumulative p-step-ahead sector demand model at time step k
can be described in terms of the cumulative sum of q past sector demands as

dk+p = αk,p

k∑
i=k−q+1

di + βk,p + ek, (6)

where αk,p and βk,p are the coefficients that map the cumulative sector demand at the kth time step to the
sector demand at the (k + p)th time step. Once the least-square solution of coefficients α̂k,p and β̂k,p are
identified, the p-step prediction of the sector demand at the kth time step for a day m, d̂k+p,m, based on the
observed cumulative sector demand,

∑k
i=k−q+1 di,m, can be expressed as

d̂k+p,m = α̂k,p

k∑
i=k−q+1

di,m + β̂k,p. (7)

The model in Eq. (6) and Eq. (7) is referred to as the cumulative periodic auto-regressive (CPAR) sector
demand prediction model. During the analysis, it is noticed that the CPAR model using the sum of the
all demands in the past (q = k) works best overall. For the example used in the PAR model, the CPAR
model with q = 8 has a RMS error of 1.68 for the 15-minute prediction, and 2.00 for the 2-hour prediction,
compared with 1.93 and 2.15 respectively for the PAR model. It appears that the CPAR model performs a
little better than the PAR model. More analysis is done in Section IV to evaluate this property.

III. Weather Factor

Weather has a big influence on air traffic sector demand and the uncertainty in weather may cause error in
the predictions.5,11 If a severe storm blocks a sector or regions near it, both the sector capacity and demand
may drop dramatically.12,13 A weather factor that discounts the weather-free sector demand prediction is
derived in this section.

In order to model the weather impact on sector demand prediction, an accurate weather forecast product
with high update rate is required. In addition, to capture the impact on all low, high, and super high sectors,
the storm echo tops information is useful. The weather data used in this paper was provided by the Corridor
Integrated Weather System (CIWS).14 CIWS, developed and operated by MIT Lincoln Laboratory, provides
both accurate precipitation and echo tops data and is updated every 5 minutes. In addition, CIWS provides
convective forecasts at 5-minute intervals up to 2 hours in the future.

The weather factor used to discount the sector demand prediction was chosen to be the sector weather
index, defined as the percentage of area covered by the storm with precipitation vertically integrated liquid
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(b) The sector demand and weather index of ZID93 on
August 16, 2007

Figure 4. The weather data, the sector demand and weather index on a severe weather day

(VIL) level three and above. Only storms with the echo tops above the lower boundary of the sector are
considered. The sector weather index at time k is formulated as

wk =
Awk
A
, (8)

where A is the area of the sector and Awk is the area of the sector covered by storms with the echo tops at
or above the lower bound of the sector at time k. Note that if time k is a future time, the weather forecast
is used to determined Awk . It is possible to use other definitions of a sector weather index.12,13

Figure 4a shows a snap shot of the CIWS data for the high altitude sectors at Indianapolis center (ZID)
on a severe weather day. The red spots indicate the storms with VIL level 3 and above, and the echo tops
at 35,000 ft. As shown in this figure, most of the sector ZID93 is covered by the storm. The sector weather
index for ZID93 on August 16, 2007 is shown in the red line in Fig. 4b. Also shown in the figure is the actual
sector demand on the same day in blue line. Notice the sector weather index is greater than 30% from 18:00
to 20:00 Eastern Daylight Time (EDT), and clearly the sector demand drops during the same period.

Traffic reduction due to weather impact can be modeled in many different ways.15 In this research, the
weather-free prediction was first estimated, then the sector weather index was used to adjust the prediction.
Assume that the sector demand starts to decay when the sector weather factor exceeds wlow, and reaches
0 when the weather factor reaches whigh. The sector demand reduction rate is modeled as the power law
distribution, 1 − ((wk − wlow)/(whigh − wlow))γ , where γ is the power of the distribution. To reflect the
thresholds, the sector weather index in Eq. (8) is redefined as

wk =


wlow if Awk /A ≤ wlow

Awk /A if wlow < Awk /A < whigh

whigh if whigh ≤ Awk /A

. (9)

In order to adjust the weather impact on the sector demand prediction model, the weather forecast is used
to compute the predicted sector weather index. Assume at time k, the predicted sector weather index at
time k + p is wk+p, the PAR sector demand prediction model in Eq. (5) can be rewritten as

d̂k+p,m =
(

1−
(
wk+p − wlow
whigh − wlow

)γ)
(α̂k,p dk,m + β̂k,p), (10)

or the CPAR sector demand prediction model in Eq. (7) can be rewritten as

d̂k+p,m =
(

1−
(
wk+p − wlow
whigh − wlow

)γ)
(α̂k,p

k∑
i=k−q+1

di,m + β̂k,p). (11)
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Using the echo tops information provides a more representative weather index, especially for the high
sectors. If there are storms with low echo tops located at some high sectors, the weather might have minimal
impact on the sector demand. The sector demand and weather index for sector ZID93 on two different days
is shown in Fig. 5. Both days have severe storms, but one has high echo tops while the other has low echo
tops. The sector demands on severe weather days were compared with the average sector demand on the
rest of the days in the same month. In Fig. 5a, the sector demand on August 16, 2007 is lower than the
average between 18:00 and 20:00 (EDT) because of the high weather index during the period, as indicated
in Fig. 5c. The blue line in Fig. 5c shows the weather index considering the area covered by storms without
the echo tops information, and the red line is the weather index considering the echo tops at 35,000ft and
above. In this case, the two lines are close. This suggests that there are severe storms in the area and most
of the echo tops are higher than the lower bound of sector ZID93. On the other hand, on October 23, 2007,
there is no demand reduction compared to the average of the other days in October 2007 during 18:00 and
20:00 (EDT), shown in Fig. 5b, even though there are storms in the sector during the period, as shown in
Fig. 5d. The red line in Fig. 5d is substantially lower than the blue line, which means even though there
are storms in the sector, most the echo tops are lower than the low boundary of the sector and have minor
impact on the sector demand. In the next section, the sector weather index refers the index with the echo
tops information.
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(b) Sector demand on October 23, 2007
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(c) Weather index on August 16, 2007
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Figure 5. Sector demand and weather indices with and without echo tops information on August 16 and October 23,
2007.

IV. Results

The sector demands of 25 high and superhigh sectors in ZID were investigated in this research. The major
flows of ZID include the arrivals to Philadelphia International Airport (PHL), Ronald Reagan Washington
National Airport (DCA), Chicago O’Hare International Airport (ORD), Detroit Metropolitan Wayne County
Airport (DTW), and Cleveland-Hopkins International Airport (CLE), the departures from ORD and DTW,
the westbound traffic of airway J80 from New York Center (ZNY) and Boston Center (ZBW), and the traffic
to New York Terminal Radar Approach Control (N90). The sector demands for the month of August, 2007
were used to build the sector demand prediction PAR and CPAR models, described in Eq. (1), Eq. (2), and
Eq. (6) . The time step used in the models is 15 minutes. Once the parameters were identified, Eq. (5)
and Eq. (7) were used to perform the sector demand prediction for the month of September, 2007. Starting

6 of 10

American Institute of Aeronautics and Astronautics



ZID super high and high 
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Figure 6. Southwest region of superhigh (red) and high sector (blue) in ZID center

from the 15-minute prediction model, up to 2-hours prediction model were built and evaluated. The results
of four super-high sectors ZID91, ZID92, ZID93, and ZID94, and four high sectors ZID81, ZID82, ZID83,
and ZID84 in the southwest region of ZID, as shown in Fig. 6, were presented. The behavior of both PAR
and CPAR models are summarized in Table 1. Even though the performance of the two models are very
close, CPAR prediction models perform equal to or better than the PAR models in all the cases with the
exceptions of the 15-min prediction at ZID81 (PAR 1.95, CPAR 1.98) and at ZID82 (PAR 1.57, CPAR 1.58).
Among the cases, the error in CPAR models is 2.46% smaller than the error in PAR models in average. Also
notice the errors of both PAR and CPAR models are not sensitive to the look ahead time. In general, the
errors are larger with longer look ahead time, but only slightly. The errors of 120-min prediction is 5.12%
larger than the 15-min prediction in average for the PAR models, and 2.87% larger for the CPAR models.
Consider all the high and super-high sector in ZID, the results are similar. The errors of the PAR models
are between 1.57 and 2.11 in the 15-min prediction, and between 1.64 and 2.24 in the 120-min prediction,
while the errors of the CPAR models are between 1.58 and 2.10 in the 15-min prediction, and between 1.61
and 2.15 in the 120-min prediction.

Table 1. Sector demand prediction error of the PAR and CPAR models in September 2007. The model is built using
August 2007 data. The smaller errors in each case are in bold. The unit is the number of aircraft.

Sector Average prediction RMS error
Name MAP Model 15-min 30-min 45-min 60-min 75-min 90-min 105-min 120-min

ZID81 17 PAR 1.95 2.05 2.07 2.09 2.06 2.08 2.09 2.11
CPAR 1.98 2.01 2.01 2.02 2.02 2.03 2.05 2.06

ZID82 16 PAR 1.57 1.62 1.64 1.60 1.61 1.62 1.63 1.64
CPAR 1.58 1.58 1.58 1.58 1.59 1.59 1.60 1.61

ZID83 16 PAR 1.63 1.67 1.67 1.70 1.71 1.71 1.71 1.72
CPAR 1.58 1.59 1.61 1.62 1.63 1.64 1.65 1.65

ZID84 16 PAR 1.82 1.87 1.92 1.94 1.92 1.92 1.90 1.89
CPAR 1.82 1.83 1.85 1.85 1.85 1.87 1.88 1.88

ZID91 19 PAR 2.06 2.13 2.13 2.10 2.12 2.14 2.11 2.16
CPAR 2.04 2.05 2.06 2.06 2.07 2.08 2.09 2.09

ZID92 17 PAR 1.68 1.76 1.73 1.72 1.71 1.75 1.74 1.74
CPAR 1.68 1.69 1.69 1.70 1.70 1.70 1.71 1.71

ZID93 19 PAR 2.11 2.20 2.21 2.19 2.23 2.24 2.23 2.24
CPAR 2.10 2.11 2.12 2.12 2.13 2.15 2.14 2.15

ZID94 17 PAR 1.90 1.99 1.98 1.98 1.99 1.95 1.97 1.99
CPAR 1.90 1.91 1.91 1.92 1.92 1.92 1.93 1.93
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(a) ZID83 on August 16, 2007
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(b) ZID93 on August 16, 2007
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(c) ZID82 on August 21, 2007
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(d) ZID92 on August 21, 2007

Figure 7. Sector weather indices on severe weather days in August 2007.

The sector demand prediction for bad weather days uses the weather factor described in the previous
section to adjust the weather-free prediction, formulated in Eq. (9), Eq. (10), and Eq. (11), with wlow = 0,
whigh = 1, and γ = 1. The days with peak weather factors greater than 30% are considered bad weather days.
For the days and sectors tested, there are four cases of severe weather periods: ZID83 on 08/16/07 between
1600-2200 (EDT), ZID93 on 08/16/07 between 1600-2200 (EDT), ZID82 on 08/21/07 between 0600-1400
(EDT), and ZID92 on 08/21/07 between 0800-1400 (EDT), shown in Fig. 7. Since all these cases happened in
August 2007, the model is built using data for July 2007. Two types of weather-weighted models are built,
one uses the actual weather information and the other uses the forecast weather information. Using the
actual weather information to perform sector demand prediction represents the cases with perfect weather
forecast. It is used to evaluate the performance of the weather-weighted prediction model and eliminate
the error caused by forecast inaccuracy. The average prediction errors of the four severe weather periods
in August 2007 are shown in Fig. 8. It is noticed that in all four cases, both the weather-weighted model
using actual weather information (red dash line) and the model using forecast weather (green dash-dot line)
produce smaller error than the weather-free model (blue solid line). The weather-weighted model using
forecast weather performs as well as the model using actual weather when the prediction time is small (less
than 30 minutes). However, with longer prediction time (more than 60 minutes), the performance starts to
decay and the errors are closer to the weather-free model. As an example, in Fig. 8b, the weather-weighted
sector demand prediction model using actual weather information improves the 15-minute prediction over
the weather-free model by 36.38%, the 60-minute prediction by 42.92%, and the 120-minute prediction by
40.77%. For the weather-weighted model using forecast weather, the improvement is 34.73% for the 15-minute
prediction, reduced to 27.81% for the 60-minute prediction, and down to 7.71% for the 120-minute prediction.
This suggests that with longer prediction time, the forecast inaccuracy might effect the performance of the
weather-weighted prediction model using forecast weather.

V. Conclusion

A class of auto-regressive models developed for sector delay estimation is used for predicting traffic
demand in a sector between 15 minutes and two hours in the future. The PAR and CPAR models capture
both the mid-term trend based on the historical data, and the short-term transient response based on the near
past observation. For the sectors tested, the errors of CPAR models are 2.46% smaller than the PAR models.
The CPAR model provides the demand predictions with an average RMS error between 1.58 and 2.10 in the
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(a) ZID83, 16:00-22:00 (EDT) on August 16, 2007
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(b) ZID93, 16:00-22:00 (EDT) on August 16, 2007
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(c) ZID82, 06:00-14:00 (EDT) on August 21, 2007
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(d) ZID92, 08:00-14:00 (EDT) on August 21, 2007

Figure 8. Average prediction errors during severe weather periods; blue solid line: weather-free model, red dash line:
weather-weighted model using actual weather, green dash-dot line: weather-weighted model using forecast weather.

15-min prediction, and between 1.61 and 2.15 in the 120-min prediction. The performance of the prediction
only decays slightly as the prediction interval is increased from 15-minute to 2-hour in both the PAR and
CPAR models, as the error increases 5.12% in PAR models and 2.87% in the CPAR models. To improve the
accuracy of sector demand prediction in the presence of severe weather, the paper introduced the concept
of weather factor. For severe weather days, the model uses the three-dimensional weather information,
considering both storm location and echo tops to form the weather factor and then adjusts the weather-free
prediction. The weather-weighted model improves the sector demand prediction by as much as 34.73% for
the 15-minute prediction, 27.81% for the 60-minute prediction, and 7.71% for the 120-minute prediction on
the days and sectors tested. Unlike traditional trajectory-based sector demand prediction methods which
predict the behavior of the National Airspace System adequately for short durations of up to 20 minutes
and are vulnerable to weather uncertainties, the weather-weighted periodic auto-regressive models provide
a reliable short- to mid-term sector demand prediction which accounts for weather uncertainty.
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